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ABSTRACT

This paper makes efforts in improving the efficiency of deep
networks for single image deraining with a newly proposed
knowledge distillation framework. Specifically, we propose a
rain-prior injected distillation scheme to transfer the knowl-
edge from a large-scale teacher network to a more compact
student network. Previous works directly calculate the distil-
lation loss between the features extracted from the student and
teacher networks. Differently, our distillation scheme adap-
tively removes the noisy background patterns by calculating
the distillation loss based on the residual feature, which is in-
ferred from the features extracted from the rain and ground
truth images. This residual operation makes the student net-
work focus on transferring only the knowledge on the rain
streaks instead of the background, which facilitates more ef-
fective distillation results. Furthermore, our method can be
applied to reduce both the network size and the deraining re-
currence stage, which makes it a plug-and-play module that
can be integrated into diverse existing deraining methods. Ex-
perimental results prove the efficiency of our method to build
an efficient deraining network and the superiority over exist-
ing distillation methods.

Index Terms— Single Image Deraining, Knowledge Dis-
tillation, Rain-Prior Injection, Recurrent Distillation

1. INTRODUCTION

Images captured on rainy days suffer from visual degradation,
which leads to low visual quality and failures in computer vi-
sion tasks. With the development of deep learning, there are a
series of methods [1, 2, 3, 4] for the goal of rain removal with
deep neural networks. To achieve the goal of better deraining
performance, there are two trends in the development of de-
raining methods. First, the number of the parameters of the
network is becoming larger and larger, and the architecture of
the network becomes more complex. In this way, the capac-
ity of the network is improved to deal with more diverse rain
distributions and provide better performance. Second, to deal
with the heavy rain, multiple recurrences are adopted in [5, 6].
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In each recurrence, the input rainy image is processed with a
deraining network, and the deraining result is viewed as the
input to the next recurrence. This framework is better at deal-
ing with heavy rain. Although significant improvement has
been achieved, these two trends lead to larger storage space
and more computational costs, which are unfriendly to real
applications. It is of great significance to build a more effi-
cient deraining model for practical applications.

Knowledge distillation provides a feasible direction to ad-
dress the issue. This technique is first proposed for image
classification [7], to transfer the knowledge from a more large
and powerful deep network (i.e., teacher network) to a smaller
network (i.e., student network). It is believed that the output
or the intermediate feature of the teacher network contains
rich supervision information out of the ground truth, which
can play the role of guidance to assist the student network to
achieve better performance. There are also some explorations
of the knowledge distillation in low-level visions. In [8], four
different distillation losses are imposed on the intermediate
feature to distill an image super-resolution network and the
efficiency of these different distillation losses is compared.
In [9], a more complex distillation loss is designed by intro-
ducing the affinity matrix, which reflects the spatial correla-
tion of the intermediate feature. However, these methods only
concentrate on designing different loss functions, which ig-
nore the physical property of the degradation and might not be
effective for single image deraining. As shown in Fig. 1 (b),
except for the rain information, there are also remaining noisy
background patterns in the intermediate features obtained by
the network. As a result, if the distillation loss is directly
imposed on the intermediate features, this mixture makes it
difficult for the student network to learn useful guidance and
leads to poor distillation results.

In this paper, we propose a rain-prior injected distillation
scheme to address the issue. Different from existing distilla-
tion approaches in low-level vision, we explore a more effec-
tive distillation mechanism instead of designing a more com-
plex distillation loss. Under our scheme, both the rainy image
and the corresponding clean image are fed into the network.
The intermediate feature of the rainy image will be subtracted
by the intermediate feature of the clean image to obtain the
residual feature. In this way, the noisy background patterns
in the intermediate feature of the rainy image can be sup-
pressed and only rain streak information remains as shown
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(a) Rainy Input (b) Feature of Rainy Image

(c) Feature of Ground Truth (d) Residual Feature

Fig. 1: Visualization of the intermediate feature of different
inputs. Clean background and rain streak patterns are mixed
in the feature of the rainy image. The residual feature, on
the contrary, contains only rain streak information with few
background patterns.

in Fig. 1 (d). The distillation loss is finally imposed on the
residual features of the student and teacher networks. Thus, a
more efficient student network can learn rain-related knowl-
edge from a stronger teacher network. Besides, we further
extend our scheme to adapt to the distillation from a recur-
rent deraining network to a single-stage deraining network,
which makes our scheme plug-and-play for diverse deraining
methods. With the well-designed rain-prior injected distil-
lation scheme, we obtain a 0.95dB improvement in terms of
Peak Signal-to-Noise Ratio (PSNR) for more efficient rain re-
moval.

2. RAIN-PRIOR INJECTED KNOWLEDGE
DISTILLATION

In this section, we introduce the proposed rain-prior injected
knowledge distillation scheme in two parts. First, we intro-
duce the basic framework of the distillation process between
vanilla deraining networks. Then, we extend our framework
to distill the knowledge from a recurrent teacher network to a
single-stage student network.

2.1. Basic Distillation Framework

Fig. 2 shows the pipeline of our rain-prior injected knowl-
edge distillation scheme. The Teacher Net and the Student
Net are pretrained so both of them can perform image derain-
ing. Then, we divide a deraining network into two parts. The
Feature Extraction part maps the input image into the interme-
diate feature space, and the Decoder part maps the intermedi-
ate feature back to the image space to obtain the deraining
results. While for the Teacher Net, network structure is more
complex with more parameters, so it achieves better deraining
performance than the Student Net. Our goal is to improve the
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Fig. 2: The pipeline of the rain-prior injected knowledge
distillation. A lightweight student network is distilled from
a more powerful teacher network. Both rainy images and
clean images are fed into two deraining models to obtain the
residual features, based on which the distillation loss is fur-
ther constructed to guide the student network to learn useful
knowledge from the more powerful teacher network.

performance of the Student Net through the distillation pro-
cess with the guidance of the intermediate feature from the
Teacher Net.

Our distillation scheme adaptively removes the noisy
background patterns. The distillation loss is inferred based
on the residual feature inferred from the features extracted
from the rainy and ground truth images. More specifically,
first, as the Clean Image Forwarding branch in Fig. 2 shows,
a clean image Ic is fed into both the Teacher Net and the
Student Net to obtain the intermediate feature FT

c and FS
c ,

respectively. FT
c and FS

c only contain background informa-
tion because there is no rain in the input Ic. After that, the
corresponding rainy image Ir is fed into both the Teacher
Net and the Student Net to obtain the intermediate feature
FT
r and FS

r from the Rainy Image Forwarding branch as
shown in Fig. 2. FT

r and FS
r contain the information of both

background patterns and rain streaks. What is more, FT
r

includes richer information compared with FS
r due to the

powerful capacity of the Teacher Net. Then, the intermediate
feature of the rainy image is subtracted with that of the clean
image to obtain the residual feature DT and DS . As shown
in Fig. 1 (d), the residual feature mainly contains rain streak
information with fewer background patterns. Then, following
[8], all the residual feature is aggregated to a one-channel
feature as follows:

D̃ =

(
C∑

c=1

D(c)

)2

, (1)

where C is the channel number and D(c) is the c-th channel
of the residual feature D. The distillation loss is imposed on
the aggregated residual feature as follows:

Ldis =
∣∣∣D̃T − D̃S

∣∣∣. (2)
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Fig. 3: The distillation pipeline for recurrent Teacher Net.
The residual feature of each recurrence is utilized to transfer
the knowledge to the Student Net.

Besides, the intermediate feature FS
r is fed into the subse-

quent Decoder to obtain the deraining result Id of the Student
Net, and the deraining loss is imposed with the corresponding
clean image as follows:

Lrain = SSIM(Id, Ic), (3)

where SSIM stands for the Structural Similarity Index Mea-
sure [10] metric. The Student Net is trained with the total loss
as follows:

Ltotal = Lrain + λLdis, (4)

where λ is the weight to balance two terms, which is set to 0.1
in our implementation. The parameters of the Teacher Net are
fixed during the distillation process.

2.2. Distillation for Recurrent Teacher Net

We further explore extending the above-mentioned distil-
lation framework to distill the knowledge from a recurrent
Teacher Net to a single-stage Student Net. As shown in
Fig. 3, the Teacher Net consists of multiple recurrences. FEi

stands for the Feature Extraction part of the i-th recurrence
and Di is the Decoder to generate the deraining result of the
i-th recurrence. This deraining result is viewed as the input
of the next deraining recurrence. M is the total number of all
recurrences. Under this structure, the residual feature of each
recurrence is calculated in the way described above and the
distillation loss in Eqn. (2) is updated as follows:

Ldis =

M∑
i=1

∣∣∣D̃T
i − D̃S

∣∣∣, (5)

where D̃T
i is the one-channel aggregated residual feature of

the i-th recurrence. The total loss to train the Student Net is
the same as Eqn. (4) and the deraining loss imposed on the
Student Net is not shown in Fig. 3 for simplicity.

3. EXPERIMENTAL RESULTS

3.1. Experiment Setting

We evaluate the efficiency of our methods in two parts. In
the first part, we perform the distillation pipeline in Sec. 2.1
between networks without the recurrent structure, namely
single-stage distillation. In the second part, we apply the
distillation pipeline in Sec. 2.2 to distill the knowledge
from a recurrent Teacher Net to a single-stage Student Net,
namely recurrent distillation. Two commonly used datasets,
Rain100H [2] and Rain1200 [3] are adopted in the evaluation.
Network Configuration. We combine the recursive resid-
ual group [11] as the Feature Extraction module and a single
convolutional layer as the Decoder module to build a derain-
ing network. A series of deraining networks are obtained by
setting the channel number of the intermediate feature and
the deraining recurrence as different values. We build one
Teacher Net and two Student Net for each part of the eval-
uation described above. For simplicity, the Teacher Net is
denoted as TN and two Student Net is denoted as SN1 and
SN2. The detailed network configurations of two evaluation
parts are shown in Tab. 1 and Tab. 2, respectively.
Training Details. The network is implemented in PyTorch
and AdaMax [12] is used as the optimizer. We crop 64 × 64
patches from each image during the training stage with the
batch size set to 8. The learning rate is first set to 10−4 and
drops automatically to 10−6 with a decay rate of 0.5. We train
the Student Net for 100 epochs on an RTX 2080 GPU.

Table 1: Configurations of the networks in single-stage dis-
tillation.

Network #channel #parameter

TN 64 10.6M
SN1 16 333K
SN2 8 167K

Table 2: Configurations of the networks in recurrent distilla-
tion.

Network #recurrence #channel #parameter

TN 3 64 31.8M
SN1 1 64 10.6M
SN2 1 32 2.65M

3.2. Overall Performance

Tab. 3 and Tab. 4 show the performance improvement of the
single-stage distillation and the recurrent distillation, respec-
tively. It can be observed that both Student Nets of different
sizes can benefit from our distillation scheme. Specifically,
up to 0.95dB improvement can be obtained for the Student
Net with the distillation of a recurrent Teacher Net.
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Table 3: Distillation results with single-stage Teacher Net.

Dataset Metrics TN
SN1 SN2

w/o distillation w distillation w/o distillation w distillation

Rain100H
PSNR 30.11 27.57 28.04 26.84 27.42
SSIM 0.9169 0.8814 0.8872 0.8681 0.8739

Rain1200
PSNR 32.84 31.71 32.00 31.12 31.58
SSIM 0.9229 0.9095 0.9119 0.9047 0.9084

Table 4: Distillation results with recurrent Teacher Net.

Dataset Metrics TN
SN1 SN2

w/o distillation w distillation w/o distillation w distillation

Rain100H
PSNR 33.03 30.11 30.87 28.99 29.94
SSIM 0.9466 0.9169 0.9252 0.9010 0.9127

Rain1200
PSNR 33.27 32.55 32.88 32.25 32.56
SSIM 0.9295 0.9213 0.9232 0.9173 0.9202

Table 5: Distillation results of existing deraining methods.

Metrics
PredNet RESCAN

baseline distilled baseline distilled

PSNR 23.14 24.07 23.10 23.44
SSIM 0.8402 0.8441 0.8180 0.8196

We further show the visual improvement of the derain-
ing result with the distillation. As shown in Fig. 4, there are
remaining rain streaks and blurry edges in the output of a Stu-
dent Net before the distillation. In comparison, the deraining
result is of better visual quality after the distillation.

3.3. Verification on Existing Deraining Methods

In order to prove the generalization capacity of our method,
we take two existing deraining methods, PredNet [5] and
RESCAN [6], as the Student Net and distill them with the
Teacher Net in Tab. 1. As shown in Tab. 6, our distillation
framework can be applied for various deraining methods with
moderate performance improvement.

3.4. Comparison with Existing Distillation Methods

We choose three existing distillation methods to compare with
our rain-prior injected distillation scheme. FitNet [13] pro-
poses to directly align the intermediate feature of the Teacher
Net and the Student Net. SRKD [8] utilizes the statistical map
of the intermediate feature for distillation. FAKD [9] calcu-
lates the spatial similarity of the intermediate feature before
the distillation process. The comparison results are shown in
Tab. 6. Our method obtains the biggest performance improve-
ment compared with other methods.

(a) Before Distillation (b) After Distillation

Fig. 4: Visual results of the distillation. The deraining result
of the network after the distillation is of better visual quality.

Table 6: Comparison with existing distillation methods.

Method baseline FitNet SRKD FAKD Ours

PSNR 26.81 26.96 27.21 27.33 27.42
SSIM 0.8681 0.8695 0.8722 0.8721 0.8739

4. CONCLUSION

In this paper, we propose a rain-prior injected knowledge
distillation framework to improve the deraining efficiency
of deep networks. The removal of the background patterns
makes the student network focus more on rain streak infor-
mation instead of the background information for an efficient
knowledge transfer. The framework is also extended from
a single-stage model to a recurrent model to achieve bet-
ter generalization capacity. Experimental results prove the
efficiency of our framework and its superiority to other distil-
lation methods.
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